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Abstract 

In this paper, we present improved versions of the 
standard semidefinite relaxation for quadratic program- 
ming, that underlies many important results in robust- 
ness analysis and combinatorial optimization. It is 
shown that the proposed polynomial time convex con- 
ditions are at least as strong as the standard ones, and 
usually better, but at a higher computational cost. Sev- 
eral applications of the new relaxations are provided, 
including less conservative upper bounds for the struc- 
tured singular value p and enhanced solutions for the 
MAX CUT graph partitioning problem. 

1 Introduction 

Many problems in systems and control theory, espe- 
cially in robustness analysis and synthesis, have in- 
trinsically “bad” computational complexity properties. 
These features (for example, being NP-hard) are spe- 
cific to the problem class, and not associated with any 
particular algorithm used in its solution. In the case 
of NP-hardness, in particular, the practical implica- 
tions are well known: unless P=NP, every algorithm 
that solves the problem will take at least an exponen- 
tial number of steps, in the worst case. 

For this reason, it is particularly useful to count with 
alternative methods, guaranteed to run in a “reason- 
able” time, that provide bounds on the optimal solu- 
tion and/or suboptimal estimates. In the particular 
case of quadratic programming (QP), such a tool has 
been made available in the last few years. Semidefi- 
nite programming (SDP) relaxations of nonconvex QP 
problems have increasingly been used for a variety of 
problems in very diverse fields of applied mathemat- 
ics. These SDP relaxations are convex optimization 
problems, that can be solved in polynomial time. The 
procedure by which a relaxed problem and its dual are 
obtained is known in the literature under several dif- 
ferent names: S-procedure, Shor relaxation, covariance 
relaxation, lifting, etc. (191. For certain specific cases 
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(such as the MAX CUT problem discussed below) these 
approximate solutions are provably good, as there exist 
hard bounds on their degree of suboptimality. However, 
some other problems (for instance, MAX CLIQUE, or 
real p [4]) are significantly harder, since even the ap- 
proximation problem within an arbitrary constant fac- 
tor is NP-hard. 

The standard relaxations (basically, duality) underlie a 
quite large number of results in many different appli- 
cation areas. For nonconvex problems, however, there 
exists the possibility of having a “duality gap,” and 
the original and relaxed problems will have different 
solutions. In this paper, we present, novel convex relax- 
ations of quadratic programming problems, that can be 
run in polynomial time, and provide improved gaps by 
combining the constraints in a nonlinear fashion (stan- 
dard duality deals only with linear combination of con- 
straints). The idea can be interpreted as finding a sep- 
arating functional, not necessarily linear, that proves 
that the intersection of two sets is empty. We employ 
as a basic technique the existence of a sum of squares 
decomposition as a sufficient condition for nonnegativ- 
ity of a multivariable form. 

The generality of the problem fornnulation makes pos- 
sible the application of the results in many different ar- 
eas: the chosen examples, from robustness analysis and 
combinatorial optimization, are just a few cases where 
the presence of gaps has been recognized and analyzed 
in the past. As we will see, our methods provide notable 
improvements for these well-known examples. 

The outline of the paper is as follows: in section 2 the 
standard semidefinite relaxation for QP problems is re- 
viewed. In the next section, we illustrate the use of 
LMI methods for obtaining a sum of squares decompo- 
sition of a form in several variables, a crucial step in 
our development. In section 4, new convex relaxations 
are proposed, based on the concept of copositive func- 
tionals and the presented decomposition. There it is 
shown that in general it is stronger than the standard 
bounds, and insight about its com;putational complex- 
ity and its relationship with certain procedures in alge- 
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Figure 1: Plant A4 and uncertainty diagonal structure A 

braic geometry are presented. Finally, the last section 
features some numerical examples, dealing with MAX 
CUT problems and complex p computation, followed 
by conclusions and directions for future research. 

2 The standard SDP relaxation 

The viewpoint taken in this paper focuses on consid- 
ering the SDP relaxation as a suficient condition for 
establishing that a certain set A, described by quadratic 
inequalities, is empty. Concretely, given m symmetric 
matrices A I , .  . . ,A,  E l i tnxn,  we define the set A as 
the intersection of the image of W" under the quadratic 
forms and the positive orthant: 

A := {Z E W"I ~i := x ~ A ~ x  3 0, x E W n / { O } }  (1) 

For future reference, given symmetric matrices Ai, let 
Ai(x) := xTAix, and a ( x )  := [xTA1x,. . . ,xTAmxIT. 
Both logical implications and constrained optimization 
problems can be posed in the framework described 
above, by checking for the existence of a counterex- 
ample, or a feasible point that achieves a given level 
of optimality, respectively. When the matrices Ai are 
indefinite, checking if A is empty is clearly an NP-hard 
problem. 

A simple sufficient condition for the set A defined in 
(1) to be empty is given by the existence of numbers X i  
that satisfy the condition: 

m 

CXiA, < 0, A i  2 0. (2) 
i=l 

The reasoning is very simple: if A is not empty, then 
there exists a point x # 0 such that the inner product of 
a(x) and X is nonnegative, since both vectors are com- 
ponentwise nonnegative. However, equation (2) makes 
that inner product negative. As a consequence, A is 
empty. 

As mentioned earlier, the procedure by which the con- 
dition (2) is derived has received several different names 
in the literature: perhaps the most correct term for this 
is simply duality, recognizing the possibility of having 

a nonzero duality gap. Note that condition (2) is a lin- 
ear matrix inequality (LMI), also known as an instance 
of a semidefinite program [19]. As is widely recognized 
today, this class of convex optimization problems can 
be efficiently solved, both in theory and practice. 

Example 1 As a typical example of a robustness pmb- 
lem that can be posed in this form, consider the case 
of a standard structured singular value p problem 1111. 
For simplicity, let the matrix M E l i tnxn,  A = 
diag(&, . . . , 6") and the scalar uncertainties Si be real. 
I n  the notation of Figure 1, the condition that the ab- 
solute value of the uncertainties & is bounded by  one, 
is equivalent to the quadratic inequalities: 

where Eii is the matrix with zem elements, except for 
a one in the (i,i) position, and Mi is the i th  row of 
the matrix M .  Therefore, for this particular case, the 
matrices Ai in 1 are given by Ai = M T M i  - Eii. In  this 
case, for example, the inexistence of nontrivial solutions 
could be interpreted as the robust stability of the system 
under uncertainty. 

Applying the SDP relaxation to the system of inequali- 
ties (3) we obtain the usual p upper bound LMI: 

M ~ D M  - D < O , D  > 0. 

where D is a diagonal matrix. 0 

It is also interesting to study the dual problem, in the 
SDP sense, of (2). It consists of checking for the exis- 
tence of a symmetric matrix 2 # 0, that satisfies 

T r A i Z Z  0, 2 2 0 .  (4) 

This dual problem can also be obtained directly from 
(l), by using the cyclic properties of the trace func- 
tion, and dropping the rank one condition on Ithe ma- 
trix 2 := xxT [19]. If the dual problem (4) does not 
have a solution, then neither does the original one. But 
at least in principle, an affirmative answer to the fea- 
sibility of (4) does not necessarily say anything about 
the set A (in some special cases, however, it is possible 
to extract useful information from the matrix Z). 

In the upcoming sections, we will see how to extend 
the standard condition (2) to a more general sufficiency 
test. To this end, we shortly review in the next section 
a useful sufficient condition for the nonnegativity of a 
form of several variables. 

3 Positivity of a multivariable form 

Let F ( z )  be a homogeneous form of degree m in n vari- 
ables {XI, . . . , xn} ,  with real coefficients. A sufficient 
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condition for F to be nonnegative is the existence of a 
sum of squares decomposition F = xi f:(x) (of course, 
m has to be even). If the fi(x) are required to be ratio- 
nal functions, such a decomposition is always possible. 
This is Hilbert's 17th problem, solved in 1927 by E. 
Artin. When the functions fi(x) are constrained to be 
homogeneous forms, it is known since Hilbert that only 
in certain cases (depending on n and m) this decom- 
position is guaranteed to exist [le]. It has been shown 
[18, 15, 121 that this decomposition, if it exists, can be 
obtained by using semidefinite programming methods. 
We briefly review the methodology below; a complete 
description can be found in the references mentioned 
earlier. 

The basic idea of the method is the following: express 
the given form as a quadratic form in some new vari- 
ables z .  These new variables are all the monomials of 
degree equal to i m  given by the different products of 
the x variables. Therefore, F ( z )  can be represented as 

F ( z )  = zTQz, (5) 
where Q is a constant matrix. If in the representation 
above Q is positive semidefinite, then F ( z )  obviously 
takes only nonnegative values. In principle, this con- 
dition is conservative, generally speaking. The main 
reason is that since the variables zz are not indepen- 
dent the matrix Q in (5) might not be unique, and it 
may be positive semidefinite for some representations, 
but not for others. Fortunately, this conservativeness 
can be avoided by using identically satisfied constraints 
that relate the 2% variables among themselves (of the 
form zzz3 = z k z l  or z; = zkzl) .  This way, it is easily 
shown that there is a linear subspace of matrices Q that 
satisfy (5) .  If the intersection of this subspace with the 
positive semidefinite matrix cone is nonempty (which 
can be checked by solving an LMI feasibility problem), 
then the original function F is guaranteed to be a sum 
of squares, and therefore positive semidefinite. This fol- 
lows from a decomposition of Q = LTL,  which implies 
the sum of squares representation F ( z )  = C,(Lz):.  
Conversely, if F can indeed be written as the sum of 
squares of forms, then expanding in monomials will pro- 
vide the representation (5). 

Example 2 Consider the following quartic form in 
two variables: 
F(x1,xz) = 22; + 2x;x2 - xy2; + 52; 

21x2 

[ 51x2 1 0 -1+2x : ] [  21x2 2 1  - - 

Take for instance X = 3. I n  this case, 
Q = L T L ,  L = - [  1 2 - 3 1  ] 

4 0 1 3  

~ 
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And therefore we have the sum of squares decomposi- 
tion: 

0 

4 Separating functionals and a new SDP 
relaxation 

In order to extend the standard condition we consider 
the well-known interpretation of the multipliers X i  in 
(2) as defining a separating hyperplane (or a linear func- 
tional). To see this, notice that the positivity condition 
on the multipliers X i  guarantees that the linear func- 
tional 4 ( z )  = XTz is positive in the positive orthant. 
Additionally, condition (2) ensures that this functional 
is negative on the image of R" under the map a. There- 
fore, those two sets have empty i:ntersection, which is 
what we want to prove. 

Understanding this idea, the proposed method is con- 
ceptually simple: replace the linear form by a more 
general function. For consistency with the linear case, 
we keep using the term "functional" to refer to these 
mappings, see for example [8, Section 13.51. For con- 
creteness, here we consider only t,he case of quadratic 
functionals, though the extension to the general case 
is straightforward. The reasons are also practical: the 
complexity of checking nonnegativity of forms of high 
degree grows quite fast. Even in the relatively simple 
case of quartic forms (as in the case we will be analyz- 
ing), the computational requirements can be demand- 
ing. 

A functional q5 : R" -+ R is copositive if xi 2 0 implies 
4(x) 2 0, i.e. is positive in the positive orthant. In this 
case, it is clear that a sufficient condition for A being 
empty is the existence of a coposit,ive functional 4 such 
that: 

4(a(x)) < 0, Vx E: R"/{O} (6) 

The reasons are exactly the ones mentioned earlier: the 
existence of a candidate x that ma.kes a(x) nonnegative 
forces the composition of the functions to be positive or 
zero, contradicting the condition above. Note that the 
same conclusions hold if 4 itself depends on x, as long 
as it is always copositive. 

Two questions immediately arise: How do we charac- 
terize copositive functionals, and how do we check con- 
dition (6)? From a complexity .viewpoint, these two 
questions are as intractable as the original problem. It 
turns out that for the case of polynomial (or rational) 
functionals 4, a partial answer to both questions can 
be obtained by using the sum of squares decomposition 
presented in the last section. 



For the exact copositivity problem, existing results 
show that checking if a quadratic form is not coposi- 
tive is an NP-complete problem [lo]. A simple suffi- 
cient condition for copositivity of a matrix @ (see [13] 
for stronger SDP-based copositivity tests) is given by 
the existence of a decomposition of @ as the sum of 
two, matrices, one positive definite and the other one 
componentwise nonnegative, i.e.: 

@ = P + N ,  P 2 0, nij 2 0. 

Note that without loss of generality, we can always take 
the diagonal elements of N to be zero. 

Therefore, we can consider quadratic copositive func- 
tionals 4 of the form above (i.e. 4(v) := vTQXv), ap- 
plied to the vector [l, a(x)lT, since we want to allow for 
linear terms too. Mainly for computational reasons, we 
would like the left-hand side of (6) to be a homogeneous 
form. This imposes certain constraints in the structure 
of 4. It can be verified that the positive definite part 
of 4 cannot help in making the form negative definite. 
Based on all these facts, a sufficient condition for A be- 
ing empty is presented next, where we also consider the 
case of equality constraints. 

Theorem 1 Assume there 'exist solutions Qi,Ti E 
Rnxn,r,j E R to the inequality: 

Cy'1 Qi(x)Ai(x) + Cl<i<j<na rijAi(x)Aj(x)+ 
+ Tj(Z)Bj(Z) < 0, vx E a n / { o } .  

(7) 
where Qi 2 0 and rij 2 0. Then, the only solution of 

Ai(.) 2 0, i = l ,  ..., n, 

&(.) = 0, i = 1,. . . , n b  

is x = 0. 

Proof: It basically follows from the same arguments as 
in the linear case: the existence of a nontrivial x 
implies a contradiction. Therefore, the set A is 
necessarily empty. 0 

Note that the left-hand side of the equation above is 
a homogeneous form of degree four. Checking the full 
condition as written would be again a hard problem, so 
we check instead a sufficient condition: that the left- 
hand side of (7) can be written (except for the sign 
change) as a sum of squares. As we have seen in sec- 
tion 3, this can be checked using semidefinite program- 
ming methods. 

The new relaxation is always at least as powerful as the 
standard one: this can be easily verified, just by taking 
Qi = X i 1  and rij = 0. Then, if (2) is feasible, then 
the left-hand side of (7) is obviously a sum of squares 
(recall that positive definite quadratic forms are always 
sums of squares). 

Remark 1 It is  interesting to compare this condition 
with the Nullstellensatz and Positivstellensatz used an 
algebraic geometry [2, Theorem 4.4.2]. These are neces- 
sary and suficient algebraic tests for checking whether 
or not a given semialgebraic set is empty. For example, 
for the equality-only case, Hilbert's Nullstellensatz says 
that i f  we have polynomials f 1 , .  . . , f m  such that there 
is no common solution of the equations f i ( X )  = 0, then 
there exists polynomials g,  such that 

g l f l  + g 2 f 2  + * * '  + gmfm = 1. 

The converse proposition, of course, always holds. In  
other words, the constant polynomial belongs to the 
ideal generated by the f i .  There are known extensions 
to the inequality case, involving so-called cones and 
other algebraic objects. These involve sums of squares 
and the products of the functions defining the inequali- 
ties, in a manner very similar to (7). 

The connections between these conditions are further 
explored in 1141, where Positivstellensatz-based methods 
are employed in the formulation of strong semidefinite 
programming conditions for many problems an systems 
and control theory. 

It is often the case that one of the quadratic forms, say 
AI ,  depends on a certain parameter y, and we are in- 
terested in finding the smallest (or largest) value of y 
for which the set d(y)  is empty. In this case, when we 
take into account the y dependence of A I ,  the problem 
of testing feasibility of (7) is no longer an LMI, since we 
have products of y and the decision variables Qi and 
q i j .  There are two possible remedies to this problem: 
the first one is to remember that even though (7) is not 
a semidefinite program, it is still a quasiconvex prob- 
lem, since for fixed y the level sets are convex. The 
alternative is to fix some of the variables (for example, 
Q1 = I ,  and q1.j = l), to make the left-hand side of 
(7) linear in y. In principle, this last technique can be 
conservative, when comparing to the case where all the 
variables are free. 

4.1 Computational complexity 
A few words on the complexity of the proposed proce- 
dure are in order. When solving the relaxation using 
standard software, the main burden lies in the compu- 
tation of the solution of the resulting system of LMIs, 
in particular due to the need of checking if the result- 
ing quartic form is a sum of squares. The LMI cor- 
responding to this condition has a matrix size equal 
to ("t'), provided no simplifications occur. However, 
the main difficulty is really caused by the large num- 
ber of variables arising from the redundant constraints, 
since its number is O(n4). Even though it is polynomial 
(and therefore the whole procedure runs in polynomial 
time), this rapid growth rate is not quite acceptable. In 
many special cases, symmetry considerations can help 
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can write the MAX CUT problem as an equality con- 
strained quadratic program. One standard formulation 
[6] is the following: 

A. //q \, 
(8) 

1 
i ; ', w,@ Inax - C W Z 3 ( 1  -- YZY3>, 

.-,* 
Y,€{-- l , l}  2 >\ /' 
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// >\' '\ 

\ e \ *' 
M 

\ 

where wij is the weight corresponding to the (i, j )  edge, 
and is zero if the nodes i and j are not connected. The 
constraints yi E {-1,l) are equivalent to the quadratic 
constraints y: = 1. 

We can obtain useful upper bounds on the optimal 
value of (8) using semidefinite programming. Removing 
the constant term, and changing the sign, the original 
problem is clearly equivalent to: 

Figure 2: The Petersen Graph 

reduce the number significantly. However, for the gen- 
era1 case with a large number of variables, alternative 
approaches are certainly needed. Some concrete possi- 
bilities, currently under study, are to exploit problem min wZ3yZyJl. (9) 
structure, and to incorporate only a certain subset of 

y ? = l  
z d  

variables into the optimization. 
The corresponding semidefinite relaxation is given by: 

min trace IVY, (10) 
5 Examples Y 20,Yii = 1 

In this section, we present some examples from ro- 
bustness analysis and combinatorial optimization, that 
show the advantages of the improved relaxations, when 
compared to the standard procedures. 

5.1 Structured singular value upper bound 
As mentioned in Remark 1, the standard upper bound 
of the structured singular value p [ll] can be inter- 
preted as the result of applying the standard relaxation 
to the quadratic forms defining the uncertainty struc- 
ture. It is therefore a natural test problem for the tech- 
niques introduced in this paper. 

Consider the counterexample, due to Morton and 
Doyle, to the proposition that p is equal to it,s stan- 
dard upper bound in the case with four scalar uncer- 
tainties [ll, Section 9.21. This corresponds to a certain 
rank two matrix A f  E C4x4. This matrix has a value of 
p ( M )  M 0.8723. However, the standard p upper bound 
has an esact value of 1. For this problem, with the im- 
proved relaxation, we are able to prove an upper bound 
of 0.895 by solving a semidefinite program. 

5.2 The MAX CUT problem 
The maximum cut (MAX CUT) problem consists in 
finding a partition of the nodes of a graph in two dis- 
joint subsets VI and V2, in such a way to maximize the 
number of edges that have an endpoint in VI and the 
other in V2. It has important practical applications, 
such as optimal circuit layout. The decision version of 
this problem (does there exist a cut with value greater 
than or equal to K?) is known to be NP-complete [5]. 

By casting the problem as a boolean maximization, we 

and its dual 
max trace-D, . (11) DSW 

where D is a diagonal matrix. Any feasible solution of 
the dual (11) provides a lower bound on the optimal 
value of (lo), and therefore on that of (9). 

A simple case where both the exact problem and the 
standard SDP relaxation can be analyzed is that of the 
n-cycle C,. This is a graph with rL nodes and n edges, 
where the edges form a closed chain. In other words, if 
the vertices are numbered from U] to w,, then all the 
edges have the form (vi, w i + l ) ,  whlere w,+1 = w1. For 
this graph, the exact value for th.e unweighted MAX 
CUT problem can easily be shown to be equal to n if 
n is even, or n - 1 otherwise. 

In the case of even n, the standard relaxation provides 
a bound that is exact, i.e., equal to n. For the odd n 
case, we have the upper bound 

For this class of graphs, the gap is maximal in the case 
of the 5-cycle (n = 5). The optimal solution is 4, but 
the computed upper bound is equal to g(5 + 6) 
4.5225. When applying the procedure developed in this 
paper to the n-cycle, we recover the optimal solution, 
i.e., the new relaxation has zero gap. 

Consider now the Petersen graph, shown in Figure 2. 
This nonplanar graph has ten nodes and fifteen edges, 
and has very interesting theoretica,l properties [7]. For 
the unit weight case described (i.e., when we only count 
the number of edges cut), the optimal solution can be 
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shown to be 12. The solution of the standard semidefi- 
nite relaxation for this problem is equal to 12.5. When 
applying the new relaxation to this problem, we are 
able to obtain the exact value 12. 

In the paper [l], a different strenghtened SDP relax- 
ation for the specific case of MAX CUT is presented. 
Even though the results in that paper provide improved 
bounds over the standard relaxation, in neither the 
case of the 5-cycle nor the Petersen graph the obtained 
bounds are exact. Of course, a fair comparison should 
also take into account the computational requirements, 
which are higher in our proposed method than in that 
of [l]. 

6 Conclusions 

A new polynomial time scheme for computing bounds 
on the optimal solution of hard nonconvex problems 
was introduced. The resulting estimates are always at 
least as strong as the ones obtained by the traditional 
semidefinite relaxation. The key ideas are to combine 
constraints nonlinearly, as opposed to standard dual- 
ity, and to use the sum of squares decomposition as 
a sufficient condition for nonnegativity of a function. 
The results obtained from its application to a few test 
problems are certainly encouraging: tighter (or even ex- 
act) bounds can be obtained. Of course, more study is 
needed in order to fully assess its potential relevance. 

While it is perfectly possible to immediately apply the 
developed tools to small problems, an important issue 
is certainly the computational feasibility of applying 
these relaxations to medium or large scale problems. 
Though in principle all the relaxations are polynomial 
time algorithms, for large size instances even the stan- 
dard semidefinite relaxation can be troublesome, only 
in part due to the relative immaturity of current SDP 
solvers. Clearly, more research is needed in the imple- 
mentation aspects, especially on the issue of exploiting 
problem structure. Some recent interesting approaches, 
such as the work in [3] on MAX CUT, show that there 
is lot of room for iinprovement, especially when working 
in specific problem classes. 

An important research topic is to understand the con- 
nections with related ideas that have been explored in 
the context of “lift-and-project” methods [9, 171 for de- 
riving valid inequalities in zero-one combinatorial opti- 
mization problems. Some common elements of the a p  
proaches are the use of new variables and constraints, 
defined as products of the original ones, and the use 
of semidefinite constraints (in the LovBsz-Schrijver N+ 
relaxation). The main feature of our work, however, is 
the extension to the general continuous case via the use 
of the sum of squares decomposition. 
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